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Abstract-The present study investigates the effect of the temperature-dependent and shear-thinning 
viscosity of a non-Newtonian fluid on the behavior of the laminar heat transfer and friction coefficients in 
a 2: 1 rectangular duct. The Hl thermal boundary condition, corresponding to an axjally-constant heat 
flux and a peripherally-constant temperature, was adopted for a top-wall-heated configuration. The present 
numerical results of local Nusselt numbers for a polyacrylamide (Separan AP-273) solution show 70-300% 
heat transfer enhancement over those of a constant-property fluid and give excellent agreement with recent 
experimental results. The heat transfer enhancement from the heated top wall is due to an increased velocity 
gradient near the wall, which is attributed to the combined effect of the temperature-dependent and shear- 
thinning viscosity. Two new correlations for the friction factor and the local Nusselt numbers in the 2: 1 
rectangular duct are proposed ; these correlations cover both thermally-developing and thermally-fully- 
developed regions. This study also proposes the use of a temperature-dependent shear-thinning fluid in a 

rectangular duct in the design of a liquid cooling module for the computer industry. 

INTRODUCTION BACKGROUND 

IN THE study of convective heat transfer phenomena, 
it is common to assume that the the~~physical 
properties of fluids are constant. However, when 
applied to practical heat transfer problems in which 
large temperature differences occur between the wall 
and fluid, the constant-property assumption could 
cause significant errors in the estimation of the heat 
transfer coefficient as well as the pumping require- 
ment. This is because viscosities of most liquids vary 
with temperature, a fact which significantly influences 
both velocity and temperature profiles. Consequently, 
the heat transfer and friction coefficients will be 
different from those obtained with a constant-prop- 
erty fluid, whose viscosity is independent of 
temperature. 

The analytical investigation of the effect of property 
variations on heat transfer is a highly complicated 
task for various reasons. First of all, the magnitude 
of the variations of fluid properties with temperature 
differs from one fluid to another. For non-Newtonian 
fluids, viscosity also varies with shear rate. In spite of 
these difficulties, however, many analytical, numeri- 
cal, and experimental studies appear in the literature 
[3-191. In general, the variation of the transport prop- 
erties with temperature results in the enhancement of 
heat transfer due to increased velocity and tem- 
perature gradients. The amount of the heat transfer 
enhancement critically depends on the type of duct 
geometry and thermal boundary condition (i.e. sym- 
metric or asymmetric). 

The study of the laminar flow and heat transfer 
behavior in a rectangular duct has become increas- 
ingly important as a result of the ongoing develop- 
ment of an advanced liquid cooling module for elec- 
tronic packaging, which uses a number of rectangular 
channels. In the rectangular duct, temperature-depen- 
dent Newtonian fluids can yield a significant heat 
transfer enhancement associated with the tem- 
perature-dependent viscosity [ 1,2]. In addition, Hart- 
nett and his coworkers [3-S] showed significant 
heat transfer enhancements with non-Newtonian 
fluids in the rectangular duct, an interesting result 
which ias not observed in a circular pipe flow. The 
objective of the present paper is to investigate the 
effects of both the temperature-dependent and the 
shear-thinning viscosity of a non-Newtonian fluid 
on the laminar friction and heat transfer behavior 
in an asymmetrically heated 2: 1 rectangular 
duct. 

Two schemes for the correction of the temperature- 
dependent property are briefly introduced below. The 
rqference-temperature method introduces a reference 
temperature at which the properties appearing in the 
non-dimensional groups (Re, Pr, Nu, etc.) may be 
evaluated in such a way that the constant-property 
results may be used to evaluate variable-property 
behavior. Typically, the reference temperature may 
be the film temperature between the wall and bulk 
temperatures. In the property-ratio method, all prop- 
erties are evaluated at the bulk temperature, and then 
all of the variable-property effects are lumped into 
a function of the ratios of some pertinent property 
evaluated at the wall temperature to that property 
evaluated at the bulk temperature. McElligot et al. 

[20] reported that the property ratio was better than 
the reference temperature method for heat transfer 
analysis, while the latter method was preferable for 
friction factor analysis. 
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NOMENCLATURE 

‘I constant in the Arrhenius relationship, (dimensional) axial distance 
equation (I) non-dimensional axial distance. 

<p (dimensional) specific heat of fluid Z/(ii, Re Pr). 

Q, (dimensional) hydraulic diameter 
E activation energy of flow per mole Greek symbols 
F function introduced in equation (7) P (dimensional) volumetric expansion of 

./ fanning friction factor. ( - dP/d:)! fluid 

[2&i(cs C,,,l ;T (dimensional) shear raLe, ,,/(l(f: 7)) 

.y gravity 1: i non-dimensional shear rate for 

GJ.,, modified Grashof number. Ljj!@“d,“iR, hydrodynamically developed flow, 
G: Gractz number, ( RL’ I+ &)/f [([IF//C_\:) l+ (&y;j) 210 5 

!; (dimensional) space-averaged heat I- aspect ratio (i.c. ratio of width to 
transfer coefficient height = J.,)/.xJ 

I; (dimensional) thermal conductivity of 6 ratio of the non-Newtonian to 
fluid Newtonian shear rate, (3n’f l)/4n’ 

I? (dimensional) fluid consistency index ? i constant viscosity-variation parameter 

K (dimensional) modified consistency introduced in equation (14) 
index introduced in equation (5) V,,I (dimensional) reference viscosity (at inlet 

II exponent introduced in equation (8) temperature of 20 C) 
II’ flow behavior index for non-Newtonian q non-dimensional viscosity. O(~~)/~,,, 

fluids %I zero-shear rate viscosity. yl($/&l 

NLI Nussclt number, calculated at the heated 0 neighboring dependent variable 

top wall, IQ/k; introduced in equation (16) 

Y (dimensional) static pressure i. characteristic time 

P non-dimensional static pressure, 5 constant Deborah number--variation 
Pi;pV‘& parameter in equation (14) 

Pr Prandtl number, vi,,.r,,/E, Y correction factor for friction factor 
-,I 
q (dimensional) heat flux introduced in equation (7) 

R (dimensional) gas constant per mole 52 correction factor for Nusselt number 

Re Reynolds number, (p~~,,,,&)/~~,, introduced in equation (22). 

R% modified Rayleigh number, Gr, Pr 

r: (dimensional) radial distance Subscripts 

s, reduced shear rate introduced in b bulk 

equation (3) cP constant-property 

T non-dimensional temperature. CPF constant-property fluid 

(T- Ta)/(q”D,//F,) I film 

7) (dimensional) fluid inlet temperature i inlet 

T\\ (dimensional) wall temperature 0 unperturbed 

I; (dimensional) axial velocity TICF temperature-independent Carrcau 

I’, non-dimensional axial velocity, L;Ji& fluid 

v;;,,, (dimensional) average axial velocity vp.n’ variable-property for arbitrary 

.\-. y (dimensional) axes of Cartesian II’ 

coordinate system W wall 

.Y, J non-dimensional axes of Cartesian Z axial direction. 

coordinate. .U!d,,. J,‘.!&, 

.\.*, I’* non-dimensional lateral and vertical Superscript 
distances. .Ul.\:,,. ?;I p ‘. 0 dimensional quantities. 

Non-isothernd hninar fio~, in 11 c,ircwlar pipe perature, and a is a constant for a given fluid. Using 

The viscosity of a Newtonian fluid, 11, is tra- this equation, the shear stress of the Newtonian fluid. 

ditionally related to temperature by the Arrhenius S. can be expressed as follows : 
relationshiD 181 : 

- -_ 
p = uexp (E/RT) 

f = aexp (i?/l?jT)( -dz?/dq. (2) 

where E is the activation energy of flow per mole, ii For a non-Newtonian fluid such as the power-law 

is the gas constant per mole. ?= is an absolute tem- fluid, an analogous expression might be written as : 
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_ __ 
Z = &[exp (E/RT)( -dzi/dQ]“’ = &c, (3) 

where the term 3; is the ‘reduced shear rate’, and & 
is the fluid consistency index, both independent of 
temperature. This equation was used to modify the 
power-law mode1 in order to include the temperature 
effect on non-Newtonian viscosity in the present 
study. Hanks and Christiansen [9] derived the fol- 
lowing relationship between non-isothe~a1 friction 
factor, .f&:,, and flow rate, 0 : 

(4) 

where 

The subscript ‘niso’ represents non-isothermal, and Y 
is a non-isothermal flow function dependent on both 
flow behavior index, n’, and temperature. Re- 
arranging equation (4) and comparing it with the 
isothermal friction factor, A,,, Hanks and 
Christiansen [9] obtained the following correlation : 

The friction factor in a non-isothe~al flow can be 
calculated from either equations (4) or (6), provided 
that Y can be evaluated. Hanks and Christiansen [9] 
proposed a procedure to obtain the correction factor 
for a non-isothermal friction factor, ‘Y, as fohows: 

y=3n’+1 - - 
n’ Fexp [(I -~‘)(~/~)(I~~~ - l/Fw)], (7) 

where Fis known as a function of the Graetz number. 

Laminar heat transjbr in a circular pipe jfoow 
For a circular pipe flow, where a symmetric heating 

at the wall is expected, Sieder and Tate [6] exper- 
imentally investigated the effect of the variable vis- 
cosity of oils on heat transfer in both heating and 
cooling cases. The temperature effect on heat transfer 
was shown in the following equation : 

~~I~U~~ = ~~~~~?,“)I~, 6% 

where qh and qw represent viscosities evaluated at local 
bulk and local wall temperatures, respectively, and 
Nu,~ represents the Nusselt number corresponding to 
a constant-property fluid. Sieder and Tate [6] reported 
that the n value in equation (8) was 0.14 for the 
laminar Newtonian Auid Aow in a circular pipe. 

Pigford [IO] obtained a solution for both thermally- 
developing Newtonian and non-Newtonian (power- 
law) fluid flow by extending the Leveque’s solution to 
include the effects of variable viscosity and buoyancy. 
His analysis for the constant wall temperature case in 
the form of Nu, resulted in 

NUT. = 1.756’~3Gz“7, (9) 

where 6 = fw/(X F/L?), and liw is a function of Gz, Q,/v~, 
and Gr. Physically, the term 6 represents the ratio of 
the velocity gradient at the wall. Pigford [lo] showed 
that 6 is equal to [(3n’+ 1)/4n’] for power-law fluids. 
It is of note that the non-Newtonian effect has been 
taken into account by a simple multiplication of 
[(3n’+ 1)/4n’]‘:3 to the corresponding Newtonian 
result. 

In order to accommodate the effect of the viscosity- 
temperature dependence, Metzner et al. [11] added 
an empirical term, similar to that of Sieder-Tate, to 
equation (9) as follows : 

Mu = L.418&‘:3&“3(R irf ), hi u . (10) 

This equation allows the velocity profile to distort 
according to the viscosity variation with temperature. 
Christiansen and Craig [ 121 pointed out the limitation 
of this empirical correction term in equation (10) 
when n approaches zero in a plug flow. 

‘Mizushina et al. [I 31 suggested a two-step tem- 
perature correction ; one for the entrance region and 
the other for the thermally-fully-developed region. 
Bassett and Welty [14] conducted an experimental 
study of the laminar heat transfer behavior for aque- 
ous solutions of carboxymethyl cellulose (CMC) and 
polyethylene oxide (Polyox). The viscosity of the 
Polyox solution showed greater pseudo-plasticity 
(with a smaller fluid behavior index, n’) than the CMC 
solution, while the viscosity of the CMC solution 
depended on temperature more than the Polyox fluid. 
They concluded that the local wall shear rate con- 
trolled the heat transfer rate, and that the shear rate 
was more profoundly affected by the viscosity variation 
with temperature than by the pseudo-plasticity. Joshi 
and Bergles [ 151 experimentally studied the effects of 
non-Newtonian behavior and temperature-dependent 
fluid consistency index (K) on the heat transfer, and 
proposed two correlations to account for these two 
effects. 

Cho and Hartnett [16] summarized the empirical 
correlations for the laminar heat transfer for non- 
Newtonian fluids and pointed out that, for a large 
bulk-to-wall temperature difference, the correlation 
should include the corrections for the temperature- 
de~ndent viscosity effect as welt as for natural con- 
vection. 

Table 1 summarizes some of the important empiri- 
cal equations which considered temperature-depen- 
dence into the laminar heat transfer. In general, the 
fluid consistency index correction, (A&/K,)“, for both 
entrance and fully-developed regions became a func- 
tion of the power-law index, n’. 

Laminar heut tran.@ in a non-circular duct 
Turning to a non-circular duct geometry, Cochrane 

[ 171 numerically investigated the laminar heat transfer 
behavior of flow between two parallel plates using a 
temperature-dependent power-law model. Gingrich ef 
al. [18] investigated the effects of shear-thinning vis- 
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Table I. Empirical correlations for laminar heat transfer 

References 

Constant heat llux : 

Mizushlna PI ul. [ 131 

Bassett and Welty [14] 

Constant temperature : 
Pigford [IO] 

Metzner ct cl/. [I I] 

Gori [26] 

Ghosh and Rao [27] 

Correlations 

Kb [1 
I, I ,/I’ 

/Vu ” = l,416”G~“3 
K, 

Nu, zz 1,85(‘3-_’ ’ I”“% 

cosity and viscous dissipation on the laminar heat 
transfer in a 2 : I rectangular duct. 

Hartnett and Kostic [4] experimentally observed 
much higher heat transfer coefficients with viscoelastic 
fluids (polyacrylamide, Separan AP-273) in a laminar 
flow through a 2 : I rectangular duct than those with 

Newtonian fluids at the same Rayleigh number. Xie 

and Hartnett [3] experimentally studied the laminar 
heat transfer performance of aqueous solutions of 

Carbopol-934 (polyacrylic acid) and Separan AP-273 
in a 2 : 1 rectangular duct with a top-wall-heated ther- 

mal boundary condition (i.e. HI). The local Nusselt 
numbers from the heated top wall increased by 
approximately two to three times over the values of 
water, a phenomenon that they attributed to a sec- 
ondary flow resulting from an asymmetric velocity 

profile associated with the viscoelasticity of the two 
fluids [3]. Recently, Gao [5] has numerically shown 
evidence of secondary motions in the laminar flow 
of viscoelastic fluids in rectangular ducts using the 
Rciner-Rivlin model. Although the effect of the sec- 
ondary Row on the fricdon factor was negligible, the 
secondary flow has a major effect on the heat transfer 

for viscoelastic fluids in rectangular ducts. The Nusselt 
number calculated by Gao for the Rciner-Rivlin fluid 
was in good agreement with experimental results of 
Xie and Hartnett [3]. 

Tcmperufure-dependent viscosit_v model 
There have been some attempts 10 investigate the 

combined effect of temperature-dependent and shear- 
thinning viscosity of a non-Newtonian fluid on the 
laminar heat transfer enhancement in a non-circular 
duct. Shadid and Eckert [ 191 proposed a temperature- 
shifted Carreau model and numerically studied a vis- 
cous dissipation problem by using a high viscosity 

[ {$$zsT ” (for heating) 

fluid in a pipe flow. Shin and Cho [21] introduced a 
temperature-dependent Carreau model based on the 
viscosity measurements of polyacrylamide (Separan 
AP-273) solution ; they found that the zero-shear-rate 
viscosity of the Separan solution was very sensitive to 
temperature, whereas the infinite-shear-rate viscosity 

was almost independent of temperature. They also 
reported the variations of characteristic time constant, 

i., fluid behavior index, n’, and fluid consistency index. 

K, with temperature [21]. 

PROBLEM DESCRIPTION AND 

ASSUMPTIONS 

Figure 1 shows a schematic diagram of the system 
under consideration. Fluid enters the duct with a fully- 
developed parabolic velocity profile and a uniform 
temperature T,. This study adopts the Hl thermal 
boundary condition corresponding to axially constant 
heat flux and peripherally constant temperature (top 

V(x,y), Parabolic profile 

FIG. I Hydrodynamic and thermal boundary conditions. A 
developed velocity profile was used at the inlet of rectangular 

duct. 
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wall heated, and other walls adiabatic). In order to 
delineate the effect of the secondary flow at the corner 
of the rectangular duct, an axially-parallel flow was 
assumed such that the axial velocity, Q(X, y, z), was 
the only non-zero velocity component. Thus, the pre- 
sent calculation represents the case of a thermally- 
developing but axially-parallel flow with a heated top 
wall in the 2 : I rectangular duct. In other words, any 
heat transfer enhancement must be due to the changes 
in velocity and temperature gradients in the present 
calculation. 

In order to simplify the computational model, the 
following treatments were incorporated. 

I. Fluid properties arc constant except for the vis- 
cosity which is dependent on the temperature and 
shear rate. 

2. Axial conduction of thermal energy is negligibly 
small, which requires a large Peclet number (i.e. the 
product of the Reynolds number, Re, and the Prandtl 
number, Pr) . 

3. Viscous dissipation of thermal energy is negli- 
gibly small, which requires that the Brinkman 
number, Br, a measure of the magnitude of the viscous 
dissipation, be very small. 

4. The term, q(?;‘, 7’)(8I’Jaz), in the axial momen- 
tum equation is negligibly small. 

FORMULATION AND NUMERICAL 

TECHNIQUES 

The non-dimensional forms of the conservation 
equations of mass, momentum, and energy for an 
axially parallel and the~ally-developing flow in a 
rectangular duct are given as follows. 

Continuity : 

U&X, y) dxdy = 1 .O. 

Axial momentum : 

+32fReref = 0. (12) 

Energy : 

The inlet temperature of 20°C is used as the reference 
temperature. In order to assess the role of viscosity 
variation on the development of the flow field due to 
temperature variation, the shear-thinning and tem- 
perature-dependent viscosity is employed by using the 
temperature-dependent Carreau model [21], which is 
given as 

In the above equation, De is the Deborah number 
(,?pJ&), [ represents the slope of q0 vs T curve, 
which becomes negative for heating case and positive 
for cooling case, and 5 is a constant accounting for 
the temperature dependence of time constant (x). 7’ 
is a dimensionless temperature introduced for Hl 
boundary condition, defined as 

(1% 

Equation (14) considers the effects of temperature on 
the apparent viscosity, the time constant, and the fluid 
behavior index for a non-Newtonian fluid. 

In the axial momentum equation, the product of 
the Fanning friction factor and the Reynolds number, 

f%,,, represents a source term. As mentioned earlier, 
the Reynolds number is based on the reference 
viscosity, qref, which is constant. In a non-isothermal 
how, however, the local viscosity changes due to tem- 
perature. In this case, the physicai meaning of fRercf 
should be carefully examined, as will be discussed later 
in Figs. 8(a) and (b). 

Boundary conditions and solution methodology 

Since detailed descriptions of the boundary con- 
ditions and the solution methodology have been given 
elsewhere fl8, 231, only a brief summary is given 
below. The no-slip boundary condition is applied 
along the periphery of the duct for the axial velocity 
component. The constant heat flux boundary con- 
dition is applied only on the top wall of the rectangular 
duct. The other three walls are assumed to be 
adiabatic. 

Solutions to the problem defined by the foregoing 
equations were obtained numerically by finite volume 
procedures [22]. A second-order accurate difference 
scheme was employed for the diffusion terms while 
the second-order upwinding scheme [23] was 
employed for the convective term in the energy equa- 
tion for all interior nodal points. For the near-bound- 
ary control volumes, there was no need for a special 
discretization equation since the boundary condition 
data couId be directly employed at the boundary face. 
This convenient property arose because the grid 
points were placed at the centers of the control 
volume. In the calculation of the rate of deformation 
tensor, a second-order central difference scheme was 
employed for the interior nodes, while a first-order 
difference between the near-boundary and boundary 
nodal points was employed for the near-boundary 
control volumes. 

A fully implicit solution technique was adopted for 
both the momentum and energy equations at any 
given axial location. At a given axial location, the 
successive line under-relaxation (SLUR) procedure 
[24] was employed for the solution of the implicit finite 
difference form of the governing equations. Since the 
energy equation is parabolic in the axial direction, a 
marching solution was employed. For the momentum 



equation. a predictor:corrector method WkiS 

developed by employing SLUR for the inner iteration 
solver for a given ,f&~,,~ product in combination with 
the Van Wijngaarden-Dekker-Brent searching meth- 
odology for the outer iteration [IX]. 

the maximum deviation between the measured vis- 
cosities and the predicted values from equation (14) 
was 4% 

Equations (12) and (13) were solved by an iterating 
proccdurc in which the temperature distribution 
obtained for constant-property assumption was used 
as the tirst approximation. Then, using the appro- 
priate viscosity variation with temperature, as givcrl 

in equation (14), the momentum equation was solved 
to yield the second approxjmat~on for the velocity 
distribution. This improved velocity distribution was 
employed in the calculation of the energy equation 

in order to yield the second approximation for the 
temperature distribution. The procedure was repeated 
until the velocity and temperature distributions 
changed less than 0.1%. as compared to the values 
from the previous step. 

Prior to prcscnting the present numerical solutions, 
we will assess the appropriate grid size for a constant- 

property fluid-a cast in which well-established values 
of f’Re,,.,. are available. On a uniform grid. WC varied 
grid sizes and solved the continuity and momentum 
equations. The exact analytical value of f’Rc,,, in a 
fully-developed flow in a 2: I rectangular duct is 

15.54X06; Shah and London’s value is 15.55733 ; the 
correspondill~ value from the present study with 
62 x 62 uniform grid was 15.52953. The values of 
f&l,,, became independent of grid sizes beyond 

42 x 42. Hence, the present study used the results cal- 
culated frotn the 42 x 42 uniform grid size. Appro- 

priate axial space-marching steps along the axial dircc- 
tion were chosen from IO- ’ to IO ’ for the cncrgy 
equation. 

Convergence for the SLUR procedure was moni- 

tored by examining how well the discretizdtion equa- 

tion was satisfied by the current values of the depen- 
dent variables. For each grid point, the residual R was 
calculated as 

Y = Ca,&h+h-a,O,, (16) 

where O,, are the neighboring dependent variables, 
an,, are the coefficients corresponding to these neigh- 
boring dependent variables, b represents the other 
terms in the governing finite difference equations, 0, 
is the current nodal point dependent variable, and np is 
the coefficient corresponding to 0,. The convergence 
criteria for the SLUR method required that for any 
given grid point, the absolute value of the residual IRI 
be less than 10. ‘. 

RESULTS AND DISCUSSION 

The current numerical study used the viscosity data 
of an aqueous Polyacrylamide (Separan AP-273) solu- 
tion reported by Shin and Cho [21]. The viscosity data 
shown in Fig. 2 were fitted using equation (14), and 

Figure 3 shows transport characteristic profiles on 
the mid-plane (i.e. .Y* = 0.5). whcrc J.* = 1 .O refers to 
the heated top wall, and I’* = 0 refers to the unheated 
bottom wall. Figure 3(a)‘shows the effect of the shear- 
thinning and temperature-depel~dent viscosity of the 
Separan solution on temp~~tur~ profiles in a thcr- 
mally-developing region. where two tcmperaturc pro- 
files calculated for the Separan solution are compared 
with those for temperature-indcpcndent Carreau tluid 
(TICF) at two axial locations. Near the inlet (i.c. 
z = 0.005), there was not much difference bctwccn the 
two temperature profiles of the Separan solution and 
TICF. At z = 0.05, which was in the middle of the 
thermally-developing region, the temperature near the 
heated top wall for the Separan solution was much 
less than that for TICF. WC believe that this phcnom- 
enon is due to an efficient heat removal caused by an 
increased velocity gradient near the heated tclp wall 
for the Separan solution. 

Figure 3(b) shows the dimensionless viscosity pro- 
file of the Separan solution in the thermally-dcvcl- 
oping flow. At the inlet (i.c. 2 = 0), the viscosity of 

10“ loo 10’ IO2 1 

Shear rate (s -1) 

FIG. 2. Viscosities of the Separan solution (1000 w.p.p.m.) at three different temperatures with shear rate. 
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(a) 

------ TICF (z = 0.05) 
- Separan (2 = 0.005) 

bottom 

Y’ 

0.1 0.2 0.3 

Dimensionless Temperature, T 

top 

(b) 

O,ORi. bottom 
,001 .Ol .l 1 

Dimensionless viscosity, n 

FIG. 3. (a) Dimensionless temperature profiles on mid-plane 
(i.e. x* = 0.5) along the vertical (y) direction in a 2 : 1 rec- 
tangular duct with top-wall-heated, (b) dimensionless vis- 
cosity profiles on mid-plane (i.e. x* = 0.5) along the vertical 
(v) direction in a 2 : 1 rectangular duct with top-wall-heated. 

the Separan solution was symmetric, as indicated by 

a thick solid line. The viscosity of the Separan solution 
near the heated top wall decreased dramatically with 

increasing axial distance (i.e. 7 = 0.1 at z = 0 to 
q = 0.003 at z = 0.05) while the viscosity at the 
bottom wall remained almost unchanged. 

In order to delineate the effect of variable viscosity 
on velocity profiles in the thermally-developing flow 
field, Fig. 4(a) shows the velocity profiles at four 

different axial locations (i.e. z = 0.0, 0.005, 0.02, and 
0.05). Obviously, the reduction of the viscosity caused 
a much steeper velocity gradient with increasing axial 
distance for the Separan solution than for the tem- 

perature-independent Carreau fluid (TICF). The fully- 
developed velocity profile for TICF (i.e. a thick 
solid curve, valid for all axial locations) is shown in 
Fig. 4(a) as a reference. The location of the maximum 
velocity for the Separan solution shifted from the 
center (i.e. v* = 0.5) of the rectangular duct at the 

inlet toward the heated top wall with increasing axial 
distance. 

Figure 4(b) shows the shear-rate profiles cor- 
responding to the velocity profile at four different 
axial locations. The increase in the velocity gradient 
associated with the reduction of viscosity caused a 
high wall shear rate on the heated top wall. The 
location of the minimum shear rate moved toward the 

Y’ 

0.8 
- z= 0.0 

Dimensionless Axial Velocity (Vz) 

0.8 

0.6 

I 

top 

(a) 

bonom 

oP 

Ittom bc 
lo2 

(b) 

Dimensionless Shear Rate 

FIG. 4. (a) Dimensionless axial velocities on mid-plane (i.e. 
x* = 0.5) along the vertical (y) direction in a 2 : 1 rectangular 
duct with top-wall-heated, and (b) dimensionless shear rates 
on mid-plane (i.e. x* = 0.5) along the vertical (v) direction 

in a 2 : 1 rectangular duct with top-wall-heated, 

heated top wall..in a manner similar to that of the 
maximum velocity. 

The axial distributions of bulk and top-wall tem- 

peratures for the Separan solution and TICF are 
depicted in Fig. 5(a). The top wall temperature rep- 
resents a space-averaged temperature. As a result of 
the increase in velocity gradients near the heated top 
wall, the wall temperatures for the Separan solution 

were much lower than those for TICF, and the bulk 
temperatures for the Separan solution were slightly 
higher than those for TICF. 

Figure 5(b) shows the axial distribution of the wall 

and bulk temperature difference, AT,,.a,,_bu,k, for the 
Separan solution and for TICF. It is noteworthy that 
a thermally-fully-developed flow is obtained when 

ATwa,,.i,u,k reaches a plateau value. The results in Fig. 

5(b) indicate that the thermal entrance length, Lth+, 
for TICF is approximately 0.2 - 0.3 in the top-wall- 

heated rectangular duct. The shear-thinning and tem- 

perature-dependent viscosity yielded much shorter 
thermal entrance lengths (L,,+ = 0.05 - 0.07) than 
for TICF. 

Figure 6(a) presents the axial distributions of bulk, 

top-wall, and film viscosity for the Separan solution. 
The film viscosity was determined at film temperature 
and film shear rate. The present study used the film 
temperature that was first introduced by McAdams 
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FIG. 5. (a) Dimensionless bulk and mean-wall temperature 
profiles along the dimensionless axial distance, z, (b) differ- 
ential temperatures between wall and bulk, ATwall_hu,k, along 

the dimensionless distance. 

[25] as 

T,= r,+:(T,--T,). (17) 

Similarly, we used the film shear rate, which was 
defined as 

(18) 

Figure 6(b) shows the axial distributions of bulk 
and top-wall shear rates for the Separan solution and 

for TICF. The top-wall shear rate represents a space- 
averaged mean wall shear rate. Due to the increase of 
velocity gradients near the heated top wall, the top- 
wall shear rates for the Separan solution were much 

greater than those for TICF, and the bulk shear rates 
for the Separan solution were higher than those for 
TICF. 

Figure 7(a) presents the ratio between the viscosity 
calculated at the top-wall temperature and that at 
the bulk fluid temperatures, q,Jr~,,. along the axial 
direction. The viscosity ratios show constant values 
for both constant-property fluid (CPF) and TICF 
because the viscosity is independent of temperature 
in both cases. The viscosity ratio decreased for the 
Separan solution along the axial direction. Approach- 
ing the end of the thermal entrance length, the vis- 

Dimensionless Axial Distance. z 

~~,~~~ (b) 
0.00 0.01 0.02 0.03 0.04 0.05 

Dimensionless Axial Distance, z 

FG. 6. (a) Dimensionless bulk and mean-wall viscosity pro- 
files along the dimensionless axial distance, ;, and (b) dimen- 
sionless bulk and mean-wall shear rate profiles along the 

dimensionless axial distance, -_. 

cosity ratio for the Separan solution reached an 
asymptotic value, which depends on the magnitude of 

heat flux. The higher the heat flux is, the smaller the 
asymptotic value of the viscosity ratio is. Results in 
Fig. 7(a) indicate that a significant reduction in vis- 

cosity at any given axial location occurs as one moves 
from the center to the heated top wall of the rec- 
tangular duct along the transverse (i.e. y) direction. 

In order to see the effect of the shear rate on the 
flow and heat transfer behavior, Fig. 7(b) shows the 
ratio of the bulk shear rate to the space-averaged top- 
wall shear rate, 7,,/3,_ along the axial direction. The 

bulk shear rate is defined as follows : 

i 7 V, d.u dy 
J 

7h = s (19) 

I’, dx dJ 

Similar to the viscosity ratio, the ratios of the shear 
rate, $,,/yu, for CPF and that for TICF showed con- 
stant values, whereas the corresponding shear rate 
ratio for the Separan solution decreased along the 
axial direction, reaching an asymptotic value for each 
heat flux. 

Figure 8(a) shows the change in fRerer along the 
axial direction. At the inlet, ,fReTef had a value of 1.75 
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FIG. 7. (a) Viscosity ratio vs dimensionless axial distance, z 
and (b) shear rate ratio vs dimensionless axial distance, z. 

for n’ = 0.65 and De = 100. This value shows good 
agreement with the result of Gingrich et al. [18]. 
In the developing flow region, fRercr exponentially 
decreased with the axial distance. The higher the heat 
flux is, the more significantly fReref decreases. 

It is of note that fReref is the dimensionless value of 
the axial pressure gradient (-Ap/A?) in equation (12). 
From the definition of the friction factor, the axial 
pressure gradient might be expressed in terms of fRe 
as follows : 

= ClfRwz = CifRe,r%+ (20) 

The axial pressure gradient was proportional to the 
product of fRe, and the local viscosity (q2) evaluated 
at the local film temperature and shear rate. In a non- 
isothermal flow, the local Reynolds number (Re,) is 
no longer constant because of the temperature depen- 
dency of viscosity. In order to obtain the local Reyn- 
olds number, the reference Reynolds number (Re,,r), 
evaluated at the zero-shear-rate viscosity (v,~) at the 
reference temperature, should be corrected for the 
local film viscosity (Q). In Fig. 8(b), the products of 
the friction factor and the local Reynolds number, 
fRe,, are shown at two different heat fluxes. The local 
.fRe, increased along the axial direction, which can be 
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FIG. 8. (a) Product of the Fanning friction factor and the 
reference Reynolds number along the dimensionless axial 
distance, z, and (b) product of the Fanning friction factor 
and the local Reynolds number along the dimensionless axial 

distance, z. 

03 

attributed to the decrease of Q as well as the skewed 
velocity profiles. 

Figure 9 shows the ratio of the friction factor for 
the Separan solution to that for TICF, f&CF, as a 
function of the film tem~rature, Tp The subscript 
‘TICF’ indicates a value for the temperature-inde- 
pendent Carreau fluid. In the thermally-developing 
region, the friction factor ratios correlate well with 
the following equation : 

Proposed, Eq.(19) 

0.0’ n @ m ’ 
0.00 0.05 0.10 0.15 0.20 

Dimeflsionle~ Film Tempe~~re, T I 

FIG. 9. The relative Fanning friction factor vs dimensionless 
film temperature. 
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where ,fRe,,c, was given by Gingrich et nl. [ 1 S]. 
In order to examine the effect of the variable vis- 

cosity on the laminar heat transfer for the Separan 

solution. local Nusselt numbers are shown at two 
different modified Rayleigh numbers (Ra,) in Fig. 

10(a). giving good agreement with experimental 
results for the Separan solution reported by Xie and 

Hartnctt [3]. In the thermally-fully-developed region. 
the present calculation for TICF (with n’ = 0.65) 

yieided a Nusselt number of 3.7, which is almost ident- 
ical to the analytical value in a pipe Bow 
(Nu = ci’ ‘NM,. = 3.69). 

Figure IO(b) presents the local Nusselt numbers 
against the Graetz number. The Nusselt number for 

the Separan solution increased by 70-300% above 
the value obtained with the constant-property fluid 

(CPF). We believe that the laminar heat transfer 
enhancement with the Separan solution occurs 

because of the decrease in the viscosity near the heated 
top wall, which brings out a significant increase in 
velocity gradients and subsequent decrease in fluid 
temperatures near the heated top wall. rendering the 
overall increase in the focal heat convection per- 

formance. From the results given in Figs. IO(a) and 

(b), we conclude that the viscosity-variation 
parameter, {, and the amount of heat flux. y”, arc 
directly related to the heat transfer enhancement for 
the Separan solution. In other words, the combined 
effect of the shear-thinning and temperature-depen- 

dent cha~dctcristics of the viscosity of the Scparan 
solution causes 76300% heat transfer enhancement 
in the 2 : 1 rectangular duct. 

Figure IO(b) shows a tendency for an increasing 

Nusselt number near the end of exit of the rectangular 

duct (i.e. as the Graetz number decreases) particularly 
for the cases of high flux of q” = 2, 3, and 5. It is 

speculated that the high heat flux at the top wall 
continues to decrcasc the fluid viscosity, thus increas- 
ing local Reynolds numbers as fluid approaches the 

exit. Hence, the Nusselt number does not show the 
usual asymptotic behavior with decreasing Graetz 
number. Instead, thcrc is a slight tendency for an 

increasing Nussclt number approaching the exit ofthc 
rectangular duct for the cases of high heat flux. 

The present study considers the viscosity ratio, 

qw/qhr as well as the shear-rate ratio, jhbjw, for the heat 
transfer correlation of non-Newtonian fluids. Thcsc 
two ratios may be combined into one, using the fluid 
consistency index. We propose a correction factor (Q) 

for the Nusselt number in a non-isothermal laminar 
flow as follows : 

(a) 

Nuts, ,i- = (~~~~)(~~~,~~ j&p.,,.- / 
= RNu,,,,-_ , (22) 

where the subscripts vp and cp represent the cases of 
variable-property and constant-property fluids with 
temperature. Also, 

,,.t 
loo 10’ IO2 lo3 lo4 

GZ 

where 

(W 

_____________________ 
ed convection limit Hl(1 L) 

FIG. IO. (a) Thecomparison of the present numerical laminar 
heat transfer results of Separan with experimental results in 
a 2: I rectangular duct with top-wall-heated. (b) Nusselt 
numbers for the Separan solution vs Graetz number at 

different heat fluxes. 

Nu,,,, / = 1.35Gr',' (23) 

n = O.O8(logG~-2.5)“+0.14. (34) 

Therefore, the proposed Nusselt number correlation 
becomes 

Figure I1 shows the corrected Nusselt numbers in 
terms of Nu/Sf for CPF, TICF and the Separan solu- 
tion. The corrected Nusselt numbers for the TICF 
and the Separan solution fall to the Nusselt number 
for the constant-property fluid, indicating that the 
laminar heat transfer coefficient for the TICF and the 
Separan solution can be predicted using equations 
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2. 

3. 

4. 

5. 

FIG. 1 I. The corrected Nusselt number vs Graetz number, 
GZ. 6. 

(22) or (29, provided that the temperature depen- 
dence of the fluid consistency index is known. For 

TICF, the first term in equation (22) is unity, and 
the only correction term is 6’:3. Meanwhile, for the 

Separan solution, the fluid consistency index ratio is 
included in equation (23) with 6”‘. The exponent, IZ, 
is 0.14 in the thermally-developing region and/or low 

heat flux case. In the case of a relatively high heat flux, 
the exponent, n, is strongly dependent on the Graetz 
number. Hence, we propose a new correlation of n, 
which depends on the Graetz number, as shown in 

equation (24). It is of note that the exponent, n, 
decreases with the Graetz number initially, and 

beyond a certain Graetz number, it starts to increase. 

I. 

8. 

9. 

10. 

11. 

12. 

13. 

CONCLUSION 

This study has conducted numerical calculations to 
examine the effect of the shear-thinning and tem- 

perature-dependent viscosity on the laminar heat 
transfer behavior in a top-wall-heated 2 : 1 rectangular 
duct, in which the effect of the secondary flow on the 

heat transfer was excluded. The present results of 
the local Nusselt numbers for the Separan solution 
showed excellent agreement with recent experimental 
results [3], and showed 70-300% enhancement over 
those of a constant-property fluid. The heat transfer 

enhancement occurred because of the steep velocity 
gradient occurring from the combined effect of shear- 
thinning and temperature-dependent viscosity. The 

present study proposes a new correlation for the fric- 
tion factor and the laminar heat transfer at the heated 
top wall in the 2 : 1 rectangular duct ; this correlation 
covers both thermally-developing and thermally- 
fully-developed regions. A temperature-dependent vis- 
cous fluid such as the Separan solution can be used 

for the purpose of the heat transfer enhancement in a 
liquid cooling module in electronic packaging, where 
uneven thermal boundary conditions with non-cir- 
cular ducts are commonly utilized. 
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